Pre Olympiad Solution 2016

1. Solution:

Let the collection of the numbers be $a_1, a_2, a_3, \dots, a_{2016}$ Now according to question Sum of any 1008 integers is positive $\therefore a_1 + a_2 + a_3 \dots + a_{1008}$ is positive $\dots(1)$ Also $a_{1009} + a_{1010} \dots + a_{2016}$ is positive $\dots(2)$ Adding (1) & (2) (As we know sum of 2 positive quantities is positive. $\therefore a_1 + a_2 \dots a_{1008} + a_{1009} \dots a_{2016}$ is positive. Hence proved.

2. Solution:

3.

Let the guests be

 G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 , G_{10} & their respective shoe sizes be

 $S_1 < S_2 < S_3 < S_4 < S_5 < S_6 < S_7 < S_8 < S_9 < S_{10}$

[Assuming all guest have different shoe sizes]

Now If G_i ($i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$)

spends the night there it means that all $S_i(j \ge i)$ home been taken.

Let G_i be the guest with lowest shoes size who stays the night store.

	No of people who have to stag is & No of people who have gone are 10 – i				
	No of shoes taken				
	$i \leq 10-i$				
	2i≤5				
	i ≤ 5				
	∴ Maximum value of is 5.				
	Solution:				
	ab + cd/a				
	\Rightarrow a = x(ab + cd) for integer x				
	Similarly	b = y (ad + cb)	(2)		
		c = z (ad + bc)	(3)		
		d = b(ad + bc)	(4)		
	Multiply (1) & (4)				
	$ad = xv (ad + bc)^2$		(5)		
	Multiply (2) & (3)				
	$bc = yz (ad + bc)^2$		(6)		
	Adding (5) & (6)				
	$ad + bc = (xv + yz) (ad + bc)^2$				
	1 = (xv + yz) (ab + bc)				
	As (xv + yz)	As (xv + yz) & (ad + bc)are integers & then product is 1.			
$\therefore (xv + yz) = (ad + bc) = \pm 1$					
		Hence proved.			
	(1 200	γ	00		

4. $(4\cos^29^0 - 3)(4\cos^227^0 - 3) = \tan 9^0$ LHS = $(4(\cos^29^0) - 3)(4(\cos^227^0) - 3)$ = $(2 + 2\cos 18 - 3)(2 + 2\cos 54 - 3)$

$$= (2 \cos 18 - 1) (2 \cos 54 - 1)$$

= (0.902104) (0.1649034)
= 0.14876
$$\sin 9 - 2 \sin 9$$

RHS =
$$\tan 9 = \frac{\sin 9}{\cos 9} = \frac{2\sin 9}{2\cos 9} = 15838$$

 $= x^2 - 1 = x$

 $= x^2 - x - 1 = D$

 $\Rightarrow x = \frac{1 \pm \sqrt{+2}}{2} = \frac{1 \pm \sqrt{5}}{2}$ Ar $\frac{1 - \sqrt{5}}{2}$ is negative & length cannot be negative $\therefore x = \frac{1 + \sqrt{5}}{2}$ $\therefore \frac{b}{x} = b \times \frac{2}{1 + \sqrt{5}} = \frac{2b(\sqrt{5} - 1)}{5 - 1}$ $= b\frac{(\sqrt{5} - 1)}{2}$ \therefore K is $b\frac{(\sqrt{5} - 1)}{2}$ units from B on BC L is a $(\frac{\sqrt{5} - 1}{2})$ units from D on CD Given $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$ So, a, b, $c \neq 1$

So, to make the inequality true, we must find the maximum value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$

So Now, taking a, b, c difference \Rightarrow a, b, c = 2, 3, 4 $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6+4+3}{12} = \frac{13}{12} \le 1$ \Rightarrow a, b, c = 2, 3, 5 $\frac{1}{2} + \frac{1}{3} + \frac{1}{5} = \frac{6+15+10}{30} = \frac{31}{30} \le 1$ \Rightarrow a, b, c = 2, 3, 6 $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{3+6+9}{18} = \frac{1}{1} \le 1$ \Rightarrow a, b, c = 2, 3, 7 $= \frac{1}{2} + \frac{1}{3} + \frac{1}{7} = \frac{21+14+6}{42} = \frac{41}{42} < 1$ So, the maximum value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ they obtained is $\frac{41}{42}$ Now so, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le \frac{41}{42}$

6.

Construction: Produced ZC Intersection AB at D \angle CDA = 180⁰ \angle BCD = 120⁰ \therefore By extension C properly \angle ABC = 10⁰.

